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Optical Freguency Conversion Using
a Linearized LINbQ Modulator

Harold RoussellMember, IEEE,and Roger HelkeyMember, IEEE

Abstract—High dynamic range optical frequency conversion is LO
demonstrated using a third-order linearized modulator. A record Y
dynamic range of 122.5 dBHz*/® was achieved at an input NdYAG RF in
frequency of 400 MHz. Laser =
Mach-Zehnder '

Index Terms—Frequency conversion, optical distortion, optical
frequency conversion, optical mixing.
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Fig. 1. Experimental configuration of high-linearity 400-MHz frequency
I I IGH-LINEARITY optical links are needed for a variety conversion link using a conventional Mach-Zehnder modulator for the LO

of applications, from the distribution of cable TV Sigﬂa@)odulation and a reflective half-coupler Mach—Zehnder modulator for the RF

[1] to antenna remoting [2]. The complexity of the receivesf'gnal'

following the link can be reduced by including frequency

conversion in the optical link [3]—[13], as the first frequencyhis experiment is a reflective half-coupler Mach-Zehnder

conversion stage is eliminated and an all-digital receiver ma&yodulator from Uniphase Telecommunications Products, with

be possible because of the lower link output frequency. @1 18-mm lumped-element electrode. The linearized modulator

frequency conversion radio frequency (RF) gain of 3.3 dBias pointwas set using a feedback circuit to provide a constant

without an amplifier and a dynamic range of 112.91d#/3 ratio between the input and output optical power [18].

have been demonstrated using an unlinearized Mach-Zehndefhe dc transfer function of a half-coupler modulator can be

modulator [13]. Frequency conversion using a third-ord&yritten as

linearized electroabsorption modulator has given a dynamic I, Vv 2

range of 110 dB4z*® [8]. Ia= a-ap <COS 2< ) - /3>

For conventional suboctave links, the second-order inter-

modulation products fall out of band and third-order linearizefhere

modulators which do not suppress second-order distortion/;  photo detector current;

can be used. Third-order linearized modulators include thel,, maximum photo detector current;

directional coupler [14], series-modulator [15], reflective half- V' input voltage;

coupler [16], and electroabsorption (EA) modulator [17], and V, half-wave voltage of the modulator,

are easier to fabricate and bias than modulators with secondg  transfer function shape parameter that can be chosen

and third-order linearization. In order to have second-order by design.

frequency products fall out of band for down conversion linkS;he modulator used in this experiment hag af 0.234. The

the output band after frequency conversion must be suboctagf-coupler modulator can be designed to produce a variety

[8], resulting in a narrower frequency range than requiringf transfer functions corresponding to differefitvalues as

the input band to be suboctave. Here, a dynamic rangeilfiistrated in Fig. 2. The circles indicate the bias points for

122.5 dBHz*/ is demonstrated using a half-coupler linearizeghinimum third-order distortion.

modulator, which requires a suboctave output frequency bandThe secondary peak height of the half-coupler transfer

function is determined by the coupling coefficients of the two

II. EXPERIMENT directional couplers. These coefficients can be adjusted to set

. Lo , . the height of th k i i [
The experimental frequency conversion link conf|gurat|0tne eight of the secondary peak and give maximum value

. . . . . ) of I,, set by the modulator insertion loss. The half-coupler
is shown in Fig. 1. The local oscillator signal is generatedf y P

. tional drature-biased Mach—zehnd dul modulator can be designed with a transfer function and noise
In & conventional quadrature-blased Mach-zehnder mo uaﬁ%rure that is identical to that of the third-order linearized
driven b_y a sinusoidal signal .at the amp!|tude _for MINIMUMe ies Mach—zehnder configuration. The optimum valu@ of
conversion loss [5], [8]. The input RF signal is applied Q. .0 icoq by the noise figure tradeoff between reduced shot

a linearized modulator. The linearized modulator used Irpoise and reduced link gain at the linearized bias point [16].

Manuscript received April 28, 1998. This work was supported by the The center of the half-coupler modulator electrode is offset

I. INTRODUCTION

2Vx @

Department of the Air Force under Contract F19628-95-C-002. from the mirror, so there is a time delaybetween the modu-
The authors are with MIT Lincoln Laboratory, Lexington MA 02420 USA, _.. . .

(e-mail: roussell@Il.mit.edu). lation of the forward and reverse propagating optical waves
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Fig. 2. Reflective half-coupler Mach—-Zehnder modulator transfer functiof$g. 3. Measured power levels of fundamental signals and intermodulation

for various values of the shape parameter products as a function of input power level referenced to the modulator
input for the linearized modulator frequency conversion link measured for
Ffrr1 = 399 MHz, fryo = 401 MHz, .o = 420 MHz for (a) third-order

[16] This delay can be exp“cmy included in the modu|atopneal’izati0n (b) optimized for 40-MHz instantaneous bandwidth.

transfer function using a model that treats the electrode as a

lumped-element phase shift 135 T T 1 .

(=52

where V(¢) is the time-dependent modulator voltage. Thi
time dependence of the modulator transfer function results @ '*°
some frequency dependence of the optimum bias point fgr
linearization, which can be eliminated in the series modulator
configuration by adding an electrical time delay before the 100 ' . ' 1 |
second modulator electrode equal to the optical time delay. 0 50 100 150 290 20 300
The Mach-Zehnder modulator used to generate the local Optical Power (mWW)

oscillator modulation had an input optical power of 364 mWig. 4. Measured and calculated dynamic range as a function of optical input
which gave an output optical power of 40.7 mW, resultin wer to the Iinea_ri_zed modulator for a modulator insertion loss of 6.5 dB
from 6.5 dB of optical insertion loss and 3 dB of loss due tond a detector efficiency of 0.88 mA/mW.
guadrature modulator bias. There are more efficient methods i i o

to generate this optical modulation which could yield higher 1€ measured dynamic range value is compared in Fig. 4
optical output power and better performance [13], such (t%ca'lculatlons for a range of optical power using the trgnsfer
optical amplification of the modulated signal [10], opticalunction model of (2). The measured dynamic range is ap-

mode beating [19], or using a high-power laser modulatﬁOXimately 3_ dB lower than the modeled value, which may
or pulsed at the local oscillator frequency. be due to using a lumped-element model for the modulator

t]a_lectrode. At higher frequency>600 MHz) the calculated

The modulator was biased to cancel third-order disto )
tion resuling in a measured spurious-free dynamic rang¥namic range degrades due to the delay between forward

of 122.5 dBHZz*/> as shown in Fig. 3. The conventionala”d backward _propa_gating waves, and a d_ifferent linearized
spurious-free dynamic range definition was used, which is tRdulator configuration should be used. This modulator was
input power range for a two-tone input signal where each gperated at the upper end of its bandwidth, and a traveling
the fundamental tones are above the noise floor and each'6#'€ _modell hag be‘?” §hown to be important fpr accurately
the intermodulation products are below the noise floor [3|jr'10dellng distortion in Ilne_arlzed modu]ators without gooq
[20]. For a wide noise bandwidth, the dynamic range can Ha(ch between the electrical and optical wave [22]. It is
increased by biasing the modulator to give a finite amount B?heved that these result_s could be improved using a different
third-order distortion in order to cancel fifth-order distortion aftodulator electrode design.

a particular input power level [21]. By changing the modulator

bias, the dynamic range in a 40-MHz bandwidth was increased IIl. SUMMARY

from 60.4 to 64.7 dB as shown in Fig. 3, where the input power A half-coupler linearized modulator has been used to
has been scaled slightly in the graph to account for the chardgmonstrate a record dynamic range for a linearized frequency
in link gain due to the change in bias point. conversion link. A dynamic range of 122.5 d&*/> was
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achieved at 400 MHz, compared to previous frequencye]
conversion link results of 112.9 dBz2/2 for a conventional
Mach—Zehnder modulator and 110 #&*/5 for a linearized
electroabsorption modulator. The output frequency band must]
be suboctave to avoid second-order distortion products. This
linearized modulator configuration should allow frequencyg;

conversion

in links used for high-performance analog

applications. [9]

Link performance also has been calculated as a function
of optical power and instantaneous bandwidth. The measured
distortion was somewhat higher than predicted by a Iump((el%]

element model, and a traveling wave model may be needed at
higher frequency. Using current technology, a dynamic range
higher than 134 dBiz*/> should be possible for a frequencfl

conversion link using an optimized laser and modulator.

[12]
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